Inverse Source Problem for Sobolev Equation with Fractional Laplacian

نویسندگان

چکیده

In this paper, we are interested in the problem of determining source function for Sobolev equation with fractional Laplacian. This is ill-posed sense Hadamard. order to edit instability solution, applied Landweber method. theoretical analysis results, show error estimate between exact solution and regularized by using an a priori regularization parameter choice rule posteriori rule. Finally, investigate convergence when β ⟶ 1 + .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Optimal results for a time-fractional inverse diffusion problem under the Hölder type source condition

‎In the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

متن کامل

Fourier Truncation Method for an Inverse Source Problem for Space-time Fractional Diffusion Equation

In this article, we study an inverse problem to determine an unknown source term in a space time fractional diffusion equation, whereby the data are obtained at a certain time. In general, this problem is ill-posed in the sense of Hadamard, so the Fourier truncation method is proposed to solve the problem. In the theoretical results, we propose a priori and a posteriori parameter choice rules a...

متن کامل

Existence and uniqueness in an inverse source problem for a one-dimensional time-fractional diffusion equation

In this study, an inverse source problem for a one-dimensional timefractional diffusion equation is considered. An existence theorem based on the minimization of an error functional between the output data and the additional data is proved. Then it is showed that the unknown source function can be determined uniquely by an additional data u(0, t), 0 ≤ t ≤ T using an auxiliary uniqueness result ...

متن کامل

On the Inverse Problem for a Fractional Diffusion Equation

We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source is supposed to be space dependent only. The existence and uniqueness results are proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of function spaces

سال: 2022

ISSN: ['2314-8896', '2314-8888']

DOI: https://doi.org/10.1155/2022/1035118